Tuesday, June 4, 2019

                        PASCAL’S  TRIANGLE
The Pascal's triangle, named after Blaise Pascal, a famous french mathematician and philosopher, is shown below with 5 rows. 
 Some Important things to notice      
·         The first row starts with 1
·         Starting with row #2, the row starts and ends with 1.
·         The number 2  in the third row is found by 1 and 1 in the second row
·         The number 3 in the fourth row is found by adding 1 and 2 in the third row.
·         The number 4 in the fifth row is found by adding 1 and 3 in the fourth row. The number 6 in the fifth row in found by adding 3 and 3 in the fourth row. 
You can indeed keep building more rows by doing just that. It is not that complicated.
                                                                 1
                                                         1                1
                                                 1                2                 1
                                      1                 3                   3                 1 
                            1                 4                  6                   4                 1  
The Pascal's triangle can also be obtained by pulling out the coefficients of (a + b)n

We show the expansion of 4 binomials when n = 0, 1, 2, and 3.

You can really see the coefficients when n = 1. When n = 0, it is just the number 1 that we put on top on row #1.

(a + b)0 = 1

(a + b)1 = a + b = 1a + 1b

(a + b)2 = a2 + 2ab + b2 = 1a2 + 2ab + 1b2

a3 + 3a2b + 3ab2 + b3 = 1a3 + 3a2b + 3ab2 + 1b3 


No comments:

Post a Comment